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The melt rheology of four hyperbranched polymer structures with different molecular weights has
been studied using nonequilibrium molecular dynamics �NEMD�. Systems were simulated over a
wide range of strain rates to capture the crossover behavior from Newtonian to non-Newtonian
regimes. Rheological properties including shear viscosity and first and second normal stress
coefficients were computed and the transition to shear thinning was observed at different strain rates
for hyperbranched polymers of different sizes. The results were consistent with previous findings
from NEMD simulation of linear and dendritic polymers. Flow birefringence was characterized by
taking into account both form and intrinsic birefringences, which result from molecular and bond
alignment, respectively. The stress optical rule was tested and shown to be valid only in the
Newtonian regime and violated in the strong flow regime where the rule does not take into account
flow-induced changes of the microstructure. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3184799�

I. INTRODUCTION

Dendritic polymers including dendrimers and hyper-
branched polymers are a class of highly branched polymers
that have unique properties due to their molecular
architectures.1 Dendrimers with perfectly branched structures
are more difficult to synthesize due to the requirement of
chemical purity and stringent multiprocessing steps. In con-
trast, hyperbranched polymers with imperfect branching can
be prepared easily using “one-pot” techniques that save time
and are suitable for large scale, low cost production. How-
ever the one-pot techniques provide a polydisperse mixture
of randomly branched polymers with different size and to-
pology. This leads to difficulties in experiments but it gives
simulation a valuable opportunity to shed light on the struc-
ture and rheology of monodisperse melts of hyperbranched
polymers. In our previous report,2 the structural properties of
four hyperbranched polymer topologies under shear flow
were analyzed. In this subsequent paper, the rheological
properties of those fluids will be discussed.

Possessing special structures, dendritic polymers includ-
ing dendrimers and hyperbranched polymers have many in-
teresting properties. One of the most interesting physical
properties is the unusual melt rheology, which suggests that
these macromolecules have potential application as rheology
modifiers and processing aids.3 In comparison with linear
polymers, dendrimers and hyperbranched polymers possess
much lower viscosity and very high solubilities due to their
packed structure with a large number of functional end
groups in one molecule. It has been demonstrated that den-
dritic polyether and poly�amidoamine� melts exhibit a
Newtonian behavior over the available measurement range in

experiments and the lack of entanglements in the systems
observed suggests that as the dendritic topology leads to
globular conformations, molecules do not interpenetrate sig-
nificantly in the melt and do not combine to form aggregated
structures.4 In the case of dendritic polymers in solution, a
peak is observed in the plot of intrinsic viscosity versus mo-
lecular mass.5 This is in contrast with linear chains which
obey the Mark–Houwink equation6 and show a steady in-
crease in the intrinsic viscosity as a function of molecular
weight.

Although the number of experimental papers on hyper-
branched polymers has increased considerably, only a few of
them focus on rheology and especially melt rheology of
these materials. One of the earliest studies on melt rheology
of hyperbranched polymers was reported by Farrington
et al.7 in 1998. The melt viscosities of dendritic poly�benzyl
ether� including dendrimers and some end-substituted mono-
and tridendrons were measured. Hsieh et al.8 then presented
rheological properties of processed commercial aliphatic hy-
perbranched polyester melts. Shear thinning was observed
for the lower generation, whereas Newtonian behavior was
exhibited by the higher generation hyperbranched polyesters.
It was also found that blends of these commercial polyesters
showed only Newtonian behavior under both steady shear
and oscillatory shear if at least one of them is Newtonian.
Another early study on melt rheology reported by
Kharchenko et al.9 characterized the behavior of hyper-
branched polystyrenes. This was also the first publication on
flow birefringence of this polymer. It was found that hyper-
branched polystyrenes showed nonterminal behavior in the
low-frequency rheological response and the stress optical
rule �SOR� was only valid for polymers of high molecular
weights. Moreover it was shown that when this rule holds,
the stress optical coefficient for hyperbranched polystyrenesa�Electronic mail: btodd@swin.edu.au.
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was much lower than that for linear analogs. After that,
Suneel et al.10 reported their studies on melt rheology and
molecular weight distribution of short chain hyperbranched
aromatic polyesters. These papers confirmed that in hyper-
branched polymer melts the chains are essentially unen-
tangled. Another study on hyperbranched polyesters reported
by Gretton-Watson et al.11 showed that the viscosity of hy-
perbranched poly�methylmethacrylate� melt was signifi-
cantly lower than that of linear chains and exhibited shear
thinning behavior.

As presented in our previous paper,2 a few molecular
simulation studies on hyperbranched polymer simulation
have been reported. However none of them focused on melt
rheology. Therefore the purpose of this paper is to report the
first study on the melt rheology of hyperbranched polymers
using a coarse-grained model and nonequilibrium molecular
dynamics �NEMD� simulations.

A simple specific architecture of hyperbranched poly-
mers has been studied. The hyperbranched polymers gener-
ated have the same molecular weight �number of beads� as
perfect trifunctional dendrimers but fewer branches at one
branching point and extra beads added in the outermost layer
of the molecules. Beads along the chain interact via
Weeks–Chandler–Anderson12 �WCA� and finitely extensible
nonlinear elastic13 �FENE� potentials. More details of the
hyperbranched polymer topologies and bead spring model
can be found in our previous report.2

In the remainder of this paper, all quantities are ex-
pressed in terms of site reduced units in which the reduction
parameters are the Lennard-Jones interaction parameters �
and � and the mass mi� of bead � in molecule i, which are
set to the value of one. In terms of the corresponding quan-
tities in real units, the reduced temperature is given by
T�=kBT /�, the density by ��=��3, the pressure tensor by
P�=P�3 /� and strain rate by �̇�= �mi��2 /��1/2�̇. For sim-
plicity of notation, the asterisk will be omitted hereafter.

To simulate fluids under shear, the molecular version of
the SLLOD algorithm14 was applied and the equations of
motion are given as

ṙi� =
pi�

mi�
+ ri · �u , �1�

ṗi� = Fi� − �mi�/Mi�pi · �u − ��mi�/Mi�pi, �2�

where ri� and pi� represent the position and thermal momen-
tum of an bead � in molecule i, �u is the strain rate tensor,
ri=��=1

N� mi�ri� /Mi is the position of the molecular center of
mass of molecule i, Mi=��=1

N� mi� is the mass of molecule i,
pi=��=1

N� pi� is the momentum of the molecular center of
mass of molecule i, and � is the thermostat constraint multi-
plier which is given by

� =
�i=1

N Fi · pi − �̇�i=1
N pixpiy

�i=1
N pi

2 . �3�

This expression for � is derived from Gauss’ principle of
least constraint and used to keep the molecular center of
mass kinetic temperature constant. Throughout the simula-
tion, there was only one single thermodynamic state point

defined by the reduced bead density of 0.84 and the reduced
temperature of 1.25. The equations of motion of atoms were
integrated with time step �t=0.001 in reduced units using a
fifth-order Gear15 predictor corrector differential equation
solver. For hyperbranched polymers comprising 19 beads,
NVT simulations were performed with 216 molecules,
whereas for polymers comprising 43, 91, and 187 beads,
NVT simulations were run with 125 molecules. Each simu-
lation began with an equilibration period and 40 separate
runs, which consist of 1�106 time steps each performed for
every system. The mean simulation data were evaluated from
results of all the separate runs.

In Sec. II A of this paper, detailed analysis and discus-
sion of rheological properties for four different hyper-
branched polymers with molecular weight lying between 19
and 187 are presented. Section II B focuses on the flow bi-
refringence effect for hyperbranched polymers, which results
from contributions from the form and intrinsic birefringence.
In part C of Sec. II, comparisons with predictions of the
SOR are shown. Finally, Sec. III presents a summary and
conclusions.

II. RESULTS AND DISCUSSION

A. Rheology

The rheological properties of hyperbranched polymer
fluids under shear flow, such as the shear viscosity and first
and second normal stress coefficients, can be calculated from
the components of the molecular pressure tensor16 given by

PMV =��
i=1

Nm pipi

Mi
−

1

2�
i=1

Nm

�
�=1

n

�
j�i

Nm

�
	=1

n

rijFi�j	� , �4�

where pi represents the total peculiar center of mass momen-
tum of molecule i, as defined by the equations of motion,
rij =r j −ri is the center of mass separation of molecule i and
j, Fi�j	 is the intermolecular force on bead � in molecule i
due to bead 	 in molecule j and n is the total number of
interacting beads in a molecule. The angular brackets denote
an average over the nonequilibrium steady state. The non-
Newtonian shear viscosity of hyperbranched polymer fluids
subject to planar shear flow, where the fluid flows in the x
direction with velocity gradient in the y direction, can be
calculated from the components Pxy and Pyx of the molecular
pressure tensor PM as 
=−�Pxy + Pyx	 /2�̇.

The viscosities at various shear rates computed for dif-
ferent hyperbranched polymers using NEMD simulation are
presented in Fig. 1. As can be seen, at the same strain rate,
larger hyperbranched polymers have higher viscosity values,
indicating that under shear they have longer relaxation times.
It can also be seen that the range of strain rates considered is
large enough to capture the shear thinning behavior of all
simulated hyperbranched polymer systems. At low strain
rates, the viscosities remain constant whereas at high strain
rates, these values decrease rapidly. This property of poly-
meric fluids is very important for many engineering applica-
tions. Shear viscosity data for different hyperbranched poly-
mers in Fig. 1 were fitted using the Carreau–Yasuda model6

which is given by 
=
0 / �1+ ���̇�2�p, where 
0 is the zero
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shear viscosity, � is a time constant and p is the power law
exponent. Table I presents the fitting parameters obtained for
all simulated hyperbranched polymer systems. Apart from
using the Carreau–Yasuda model, an alternative way to ob-
tain the zero shear rate viscosity is by using the Cross
equation,17 given as 
=
�+ �
0−
�� / �1+ �K�̇�m�, where 
�

is the infinite shear viscosity, K is the consistency index, and
m is the power law index. The disadvantage of the Cross
model is that in experiment, it is difficult to measure the
infinite shear rate viscosity 
�, therefore it is often set to be
a very small value.18 Figure 2 presents the fitted lines ob-
tained from the Cross equation in comparison with the
Carreau–Yasuda equation for shear viscosity data of hyper-
branched polymers comprising 187 monomers. It can be seen
that these two models agree very well. Fitted lines are
slightly different at very high shear rates, in the transition
region from Newtonian to non-Newtonian and at very low
shear rates. Cross equation fitting parameters for shear vis-
cosity data are shown in Table II. The zero shear viscosities
for hyperbranched polymers composed of 19, 43, and 91
beads obtained from Cross equation fitting are quite similar
to those from the Carreau–Yasuda model.

Figure 3 presents the dependence of the zero shear rate
viscosity on the number of beads per molecule for different
hyperbranched polymers. The zero shear rate viscosity scales
as 
0N0.657�2� where N is the number of monomers/beads
per molecule, where by 0.657�2� we mean 0.657�0.002.
The exponent of the power law for hyperbranched polymer
melts is consistent with that for dendrimers which were

found to have 
0N0.646�2� �Ref. 19� due to similar molecular
structures. Furthermore, our results suggest that hyper-
branched polymers are free of entanglements as the depen-
dence of viscosities on the number of monomers does not
break into two regions at low and high number of monomers
while most of the linear analogs have viscosity dependencies
given as 
0Mw at low molecular weights and 
0N3.4 at
high molecular weights where the polymer chains entangle.20

However as WCA and FENE potentials were employed to
simulate hyperbranched polymers, beads along the polymer
chain can vibrate and rotate freely. This results in a polymer
model that is more flexible than typical real materials and
model molecules in shearing dense fluids may fold upon
themselves more than in reality. It has been found experi-
mentally that the value of the power law exponent for den-
drimers is 
1.1 �Refs. 7 and 21� which is quite high com-
pared to that from NEMD simulations, which was found to
be 0.646�2�. Therefore higher shear viscosity and higher val-
ues of the power law exponent are expected in experiments
on common hyperbranched polymers. However the compari-
son between our model and real polymers should be made in
terms of the number of Kuhn steps per molecule, defined as
NK= �Ns−1�2 /C�, where NS is the number of beads and C� is
the characteristic ratio. The value of NK makes it possible to
estimate the molar mass of the real polymer with an equiva-
lent NK to the polymer simulated. Our model and a closely
related model with constrained bond lengths22 have the char-
acteristic ratio of 
1.5–1.8, which can be compared with
polyethylene which has a characteristic ratio of about 7.2.

The time constant � in the Carreau–Yasuda model fitted

FIG. 1. Dependence of shear viscosity on strain rate for hyperbranched
polymers of different molecular weights �solid lines representing fitting with
the Carreau–Yasuda model�.

TABLE I. Parameters of the Carreau–Yasuda model fitted to the shear vis-
cosity vs strain rate dependence.

Number of beads 
0 � p

19 10�2� 101�8� 0.138�1�
43 18�3� 378�237� 0.143�5�
91 31�11� 1069�299� 0.148�8�

187 48�6� 1422�615� 0.158�2�

FIG. 2. Carreau–Yasuda equation vs Cross equation fitted for shear viscosity
data for hyperbranched polymers composed of 187 monomers.

TABLE II. Parameters of the Cross equation fitted to the shear viscosity vs
strain rate dependence.

Number of beads 
0 
� K m

19 10�2� 4�1� 24�9� 1.3�4�
43 18.6�3� 3.2�9� 60�10� 0.78�9�
91 35�1� 2�1� 178�20� 0.56�5�

187 53�2� 6�1� 310�41� 0.71�8�
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to the simulation data is also the longest relaxation time of
molecules composing the fluids. Although the longest relax-
ation time �0 can be the rotational relaxation time or the
reptation relaxation time, �0 can be considered to be the ro-
tational relaxation time as there is no entanglement in these
hyperbranched polymer systems and hence there is no repta-
tion relaxation time. On the other hand, the inverse of the
time constant � is the strain rate �̇0 at which the onset of
shear thinning is observed. For hyperbranched polymers
with 19, 43, 91, and 187 beads, the values of �̇0 are 9.9�5�
�10−3, 2.6�4��10−3, 9.35�3��10−4, and 7.032�2��10−4,
respectively. The shear thinning behavior occurs at lower
strain rates for large hyperbranched molecules in comparison
with small hyperbranched polymers. This can be explained
by relaxation times, the deformation and tendencies to align
with the shear flow. Shear thinning occurs due to the defor-
mation and increased alignment of the molecules to the flow
field, which is directly related to the relaxation time �0.23 At
shear rates higher than the inverse of �0, molecules are
stressed and in order to reduce the stress, the molecules ex-
tend, the deformation occurs and the alignment increases, the
fluid moves into the non-Newtonian regime and the new
structural configuration results in lower viscosity. Because
larger molecules have longer relaxation time �0, the value of
1 /�0 is smaller than that of small molecules and the fluids
composed of large polymers exhibit the crossover from
Newtonian to non-Newtonian behavior at lower strain rates.
The stretching caused by the applied shear results in a more
ellipsoidal configuration of hyperbranched polymers which
has been discussed in detail in our previous paper.2

Figure 4 presents the dependence of longest relaxation
time �0 on the number of beads per molecule N for four
hyperbranched polymer systems. The logarithm of �0 for hy-
perbranched polymers composed of 19, 43, and 91 beads has
a linear relationship with the logarithm of the number of
beads N. The relaxation time for these systems scales as
�0N1.4�2�. The exponent value of 1.4�2� for hyperbranched
polymers is consistent with previous NEMD simulation re-
sults which found that the exponent value is 1.7 for linear
polymers and 1.3 for dendrimers.24 Our exponent result is

lower than those predicted by the Rouse model which gives
�0M2.25 On the other hand the value of �0 for the largest
hyperbranched polymer system comprising 187 beads does
not follow the same trend of the smaller polymers. The main
causes might be the increase in structural rigidity with the
number of beads N and the flow-induced stretching behavior
of hyperbranched polymers which results in the more as-
pherical shape of small molecules and more spherical shape
of large molecules. This is opposite to the behavior of linear
molecules. For long linear polymers above Ncritical, the long-
est relaxation time, which is predicted to scale as N3 by the
reptation theory, results from the entanglement of long
chains.26 This is less likely to be the case for hyperbranched
polymers with short branches and a large number of terminal
groups. Furthermore our computed values of the longest re-
laxation time have large uncertainties due to the multistep
procedure used to obtain them.

The Weissenberg number We, which is a dimensionless
shear rate, can be calculated from the longest relaxation time
by the definition We= �̇�0.6 Unlike the Deborah number
which is used to describe flows with a nonconstant stretch
history, the Weissenberg number describes the flow with a
constant stretch history. Figure 5 presents the dependence of
the ratio of shear viscosity and zero shear rate viscosity on
the Weissenberg number for different hyperbranched poly-
mers. It can be seen that the ratios of shear viscosity to zero
shear rate viscosity obtained from NEMD simulations for
four hyperbranched polymer systems show a significant de-
gree of consistency with a single master curve. At We�1,
the value of 
 /
0 for all polymers starts to decrease and the
fluids move from the Newtonian to non-Newtonian regime.
The computed data were fitted with the Carreau–Yasuda
model and give a dependence of 
 /
0 to the Weissenberg
number as 
 /
0=0.996�9� / ��1+ �1.1�1��We�2��0.143�6�. Us-
ing the master curve established, the shear rate dependence
of the viscosity of other hyperbranched polymers in this se-
ries could be predicted.

The first and second normal stress coefficients, which
can be defined as �1= �Pyy − Pxx	 / �̇2 and �2= �Pzz− Pyy	 / �̇2,
are presented in Fig. 6. These values describe the effect of

FIG. 3. Zero shear viscosity vs number of beads per molecule for hyper-
branched polymers.

FIG. 4. Longest relaxation time vs number of beads per molecule for hy-
perbranched polymers.
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the normal stress differences exhibited by polymeric fluids.
Unlike Newtonian fluids which have the normal stress differ-
ences exactly zero in shearing flow, polymeric fluids always
have positive first normal stress coefficient which is usually
much larger than the magnitude of the negative second nor-
mal stress coefficient.6 An increase in these stress coeffi-

cients reflects a tendency of the fluid to deform in the normal
directions under shear. For all hyperbranched polymer sys-
tems studied, the normal stress coefficients have a large
power-law region in which it might decrease by as much as a
factor of 106 for a large molecular system. Furthermore, the
rate of decline of the first and second normal stress coeffi-
cients with the strain rate is much greater than that of the
shear viscosity. In the low shear rate region, the normal stress
coefficients reach a plateau as the ratios of Pyy − Pxx and
Pzz− Pyy are proportional to �̇2, whereas at higher shear rates,
the values of the normal stress coefficients rapidly decrease.
This again indicates that the hyperbranched polymer fluid
has a crossover from Newtonian to non-Newtonian behavior.
At the same strain rate, larger hyperbranched polymers have
higher first and second normal stress coefficients as they tend
to deform more in comparison with the small molecules. The
second normal stress coefficient, which has been studied less
extensively in experiments than the first coefficient, is nega-
tive and much smaller in magnitude than the first normal
stress coefficient. In comparison with other simulation
results,19 our normal stress coefficient values for hyper-
branched polymers are larger than those for dendrimers but
smaller than those for linear polymers.

Data for the first normal stress coefficient for hyper-
branched polymers consisting of 19 and 43 beads were fitted
using the Carreau–Yasuda model. The zero shear rate first
normal stress coefficients �1,0 for these systems were found
to be 508�13� and 2430�45�, respectively. From these values
and zero shear rate viscosities 
0 obtained from the Carreau–
Yasuda fit for shear viscosity, the viscous relaxation time �v
can be computed. The viscous relaxation time, which is de-
fined by �v=�0

�tG�t�dt /�0
�G�t�dt, where G�t� is the stress re-

laxation modulus from the theory of linear viscoelasticity,27

can be calculated by the expression �v=�1,0 /2
0. For hyper-
branched polymers comprising 19 and 43 beads, the values
of �v were found to be 25�3� and 67�7�, respectively. These
values are in very good agreement with the time constants K
obtained from the Cross model which were found to be 24�9�
and 60�10� for those hyperbranched polymer systems.

The normal stress coefficients for all hyperbranched
polymers were fitted in the power-law region and the values
of the exponents of the asymptotic dependences �1�̇−� and
�2�̇−	 are presented in Table III. The values of these ex-
ponents are within the range of experimental values for poly-
mer melts and concentrated solutions.6 Similar to NEMD
simulation results for dendrimer melts,24 the values of the �
and 	 exponents do not vary systematically with the size of
the hyperbranched polymer molecules. This is in contrast
with results for linear polymers24 which have the values of �
and 	 increasing with the chain lengths.

FIG. 5. Dependence of the ratio 
 /
0 on the Weissenberg number for dif-
ferent hyperbranched polymers.

FIG. 6. First and second normal stress coefficients vs strain rate for different
hyperbranched polymers.

TABLE III. Estimated values of the exponents in the power-law regions for
the first and second normal stress coefficients.

Number of beads � 	

19 1.09�4� 0.96�2�
43 1.09�2� 1.0476�9�
91 1.05�3� 0.96�2�

187 1.00�2� 0.91�3�
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The ratios of −�2 /�1 are presented in Fig. 7, which
shows that the values of −�2 /�1 are 
0.2 for all hyper-
branched polymer systems. This is very similar to simulation
results for dendrimers as they all have compact, highly
branched architectures with globular shape and internal
bond constraints which prevent pronounced stretching of the
molecules.

Figure 8 shows the isotropic pressure of the hyper-
branched polymer systems under shear which was calculated
as

p = 1
3Tr�PM� = 1

3 �Pxx + Pyy + Pzz� . �5�

At low strain rates, the pressure of smaller hyperbranched
polymer fluids is higher than that of larger polymer fluids,
while at high strain rates, the pressure of the large molecule
fluids increases earlier and more rapidly than that of the
small ones. This can be explained by the behavior of differ-
ent molecules under shear as presented in our previous
paper,2 that larger molecules of hyperbranched polymers be-
come aspherical more quickly under shear than for small

molecules. Fitting the pressure data using the Carreau–
Yasuda model p= p0 / �1+ ��p�̇�2�m which has been applied
for shear viscosity data, the zero shear pressure of hyper-
branched polymers can be investigated. The values of the
zero shear pressure p0 are 5.540�3�, 5.414�3�, 5.349�6�, and
5.299�8� for hyperbranched polymers composed of 19, 43,
91, and 187 monomers, respectively. The critical strain rate
at which the transition from Newtonian to non-Newtonian
behavior of the pressure occurs can be evaluated as the in-
verse of �p obtained from the Carreau–Yasuda model. The
critical strain rate was found to have the value of 0.217�2�,
0.126�5�, and 0.06�2� for hyperbranched polymers compris-
ing 43, 91, and 187 monomers, respectively. For hyper-
branched molecules composed of 19 monomers, the value of
�p obtained is very small and the value of the standard error
is large, hence the critical strain rate calculated is uncertain.
In comparison to the critical strain rate for viscosity, the
value of �̇critical for pressure is higher because a higher shear
rate is required to distort the radial distribution function than
to distort the whole molecule. The trend of pressure changes
due to strain rate observed here for hyperbranched polymer
melts is similar to that seen previously in dendrimer melts
and falls within the range between dendrimer and linear
polymer melts.19 This is because dendrimers have the most
compact architecture, whereas hyperbranched polymers are
less compact and linear polymers have the largest spatial
separation of monomers. This behavior can be found not
only for dendritic polymer melts but also for solutions. It has
been reported by Lue28 that dendritic polymers in low con-
centration solution have lower pressure than linear polymers.
In addition, it was found that concentrated solutions of low-
generation dendrimers show similar behavior to linear poly-
mers and the pressure increases more rapidly with concen-
tration for high-generation dendrimers.

B. Flow birefringence

In the presence of a velocity gradient, the statistical dis-
tribution of a flexible polymer is deformed from the equilib-
rium isotropic state and the refractive index of the solution
becomes anisotropic. This phenomenon is called flow bire-
fringence or the Maxwell effect. The birefringence of a poly-
mer system due to the alignment of the intramolecular bonds
is called intrinsic birefringence whereas that caused by the
alignment of the whole molecules is called form
birefringence.25 The contribution to the birefringence effect
from the alignment of molecules is more important in the
case of solutions and arises due to the differences between
the polarizability of the molecules and the solvent.

1. Form birefringence

In order to characterize the flow induced molecular
alignment of hyperbranched polymers, the molecular order
tensor Sm has been computed as

Sm = �
i=1

N �uiui −
1

3
I� ,

where ui is the unit vector denoting the orientation of the
single molecules and N is the total number of molecules in

FIG. 7. Ratio of the second and first normal stress coefficients for different
hyperbranched polymer systems.

FIG. 8. Dependence of the isotropic pressure on strain rate for different
hyperbranched polymers �solid lines representing fitting with the Carreau–
Yasuda model�.
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the system. The direction in which molecules are aligned is
indicated by the eigenvectors of the order tensor. Assuming
the eigenvector corresponding to the largest eigenvalue of
the tensor of gyration denotes the orientation of the molecule
ui, the birefringence extinction angle will be the angle be-
tween the flow direction and the molecular alignment
direction.

Figure 9 shows the molecular alignment angle for differ-
ent hyperbranched polymers. It can be seen that all simulated
systems reach the Newtonian region with the alignment
angle of 45° in the range of considered strain rates. The 45°
angle is expected for systems in the Newtonian regime due
to the nonuniform spin angular velocity of molecular rotation
in shear flow. Furthermore the alignment angle of large hy-
perbranched polymers departs from 45° only at low strain
rates whereas the alignment angle of small polymers remains
close to 45° until higher strain rates are reached because
these small polymers can rotate with the flow more easily. In
comparison with other NEMD simulation data, our align-
ment angles in the non-Newtonian region are smaller than
those for dendrimers and larger than those for linear poly-
mers of the same molecular weight. This is because dendrim-
ers have the most compact and constrained structure while
hyperbranched polymers have less rigid architecture and lin-
ear polymers can stretch and align more easily with respect
to the flow field, leading to anisotropic friction.

The order parameter Sm which describes the extent of the
molecular alignment can be defined as 3/2 of the largest ei-
genvalue of the order tensor, which is a measure of the an-
isotropy of the average inertia tensor of a flexible molecule
caused by the shear field.25 This value equals zero in the case
of orientational disorder and reaches one for perfect align-
ment. Figure 10 presents the molecular order parameter of
different hyperbranched polymers. It remains constant at low
strain rates and rapidly increases at high strain rate regions.
This indicates that the orientational ordering increases and
the alignment of the polymeric chains is more pronounced at
high strain rates. It can also be seen that for any given strain
rate larger N polymer systems have larger values of Sm in
comparison to smaller N polymer systems. However when

the number of beads increases, the gap between the values
of Sm for hyperbranched polymers decreases. For the two
largest systems of simulated hyperbranched polymers, the
order parameter curves almost overlap. Furthermore, at the
highest strain rate of 0.2, the order parameters for polymers
comprising 43, 91, and 187 beads reach the same value of

0.73.

2. Intrinsic birefringence

In order to characterize the intrinsic birefringence of hy-
perbranched polymer systems, the flow induced bond align-
ment has been analyzed. The bond alignment tensor can be
calculated as

Sbond = �
i=1

Ns−1 �uiui −
1

3
I� ,

where Ns is the total number of beads in one molecule and ui

is the unit vector between neighboring beads which can be
defined as

ui =
ri+1 − ri

ri+1 − ri
.

The flow alignment angle and the extent of the bond align-
ment can be calculated similarly to those of the molecular
alignment in Sec. II B 1.

Figure 11 presents the bond alignment angle results for
different hyperbranched polymers and linear polymers of
equivalent molecular weight. As can be seen, the range of
considered strain rates is wide enough for all hyperbranched
polymer systems to reach the Newtonian regime where the
bond alignment angle � is 45°. In contrast, for large linear
polymers of 91 and 187 beads per molecule, the bond align-
ment angle cannot reach 45° in the considered range of strain
rate. In order to reach the alignment angle of 45°, the sys-
tems would have to be simulated at lower strain rates. It can
also be seen that in the non-Newtonian region, the bond
alignment angle decreases with increasing strain rate. At a
given strain rate, the bond alignment angle of larger mol-
ecules is smaller than that of the smaller ones. Our data for

FIG. 9. Molecular alignment angle for hyperbranched polymers of different
molecular sizes.

FIG. 10. Order parameter of the molecular alignment tensor for different
hyperbranched polymers.

044902-7 Rheology of hyperbranched polymers J. Chem. Phys. 131, 044902 �2009�

Downloaded 06 Jan 2010 to 136.186.1.184. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



linear polymers are in good agreement with other NEMD
simulation results29 which indicated that the bond alignment
of systems comprising no more than 60 beads can reach
the Newtonian regime in the range of strain rate we have
investigated.

Alignment in the shear plane can be characterized by the
values of Sbond, which are shown in Fig. 12. It can be clearly
seen that for both hyperbranched and linear polymer sys-
tems, all these values increase with increasing strain rates,
and at the same strain rate, values for larger polymers are
always higher than those for smaller polymers. This implies
that for a given strain rate, the chain segments in large mol-
ecules can more easily stretch and align with respect to the
flow field. The Sbond function of shear rate is monotonically
increasing, but at high strain rates the values of Sbond become
the same for all hyperbranched polymer systems while those
values are much higher for large linear polymers in compari-
son with small ones. Furthermore, at a given strain rate, the
alignment parameter for hyperbranched polymers is always
lower than that for linear polymers. This is because it is more
difficult for hyperbranched chain segments to stretch and
align with respect to the flow field as they have a more com-
pact and constrained architecture. Our alignment results for
linear polymers show good agreement with other NEMD

simulation results29 although our data show slightly stronger
alignment due to the difference in temperature and chain
length of the systems.

C. Stress optical rule

In order to characterize the relationship between macro-
scopic stress with the microscopic processes such as rota-
tions and deformations of bonds,30 the SOR can be tested
from the bond alignment tensor and stress tensor. It states
that the mechanical and optical tensors are coaxial and pro-
portional to each other.

Figure 13 presents the ratio of �Pxx− Pyy� and �Sxx−Syy�,
as well as that of �Pyy − Pzz� and �Syy −Szz�, where Pxx, Pyy

and Pzz are components of the pressure tensor and Sxx, Syy,
and Szz are components of the bond alignment tensor, for
hyperbranched polymers of different molecular weight. As
can be seen, the components of the stress and alignment
tensor are proportional at low strain rates. The proportional-
ity constant, which is called the stress optical coefficient, is
independent of molecular weight. For all hyperbranched
polymer systems, this coefficient has the value of 
3.3�3�.
The independence of the stress optical coefficient on molecu-
lar weight for simulated hyperbranched polymers is in good
agreement with experimental results which showed that the
stress optical coefficient is a function of the local condition

FIG. 11. Flow alignment angle for linear and hyperbranched polymers.
FIG. 12. Bond order parameter for linear and hyperbranched polymers.

044902-8 Le et al. J. Chem. Phys. 131, 044902 �2009�

Downloaded 06 Jan 2010 to 136.186.1.184. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



such as the temperature, solvent or polymer concentration
but does not depend on the features of molecular structure on
a large length scale such as molecular weight, molecular
weight distribution, branching and degree of cross-linking.25

At high strain rates, the SOR is invalid for all simulated
hyperbranched polymers. The reason is that the microstruc-
ture of hyperbranched polymer melts is not included in the
bond order tensor whereas the stress is determined by the
alignment, deformation and microstructure of the systems.
The SOR does not take into account the flow-induced
changes of the radial distribution function which is distorted
at high strain rates.

It has been discussed elsewhere that the failure of the
SOR could be due to the influence of the molecular weight
distribution,31 the chain conformation,32 or the role of the
number of entanglements in the fluid.33 There are also certain
types of systems that do not follow the SOR at all such as
rodlike polymers in the concentrated isotropic regime.34 In
experiments, the experimental conditions can also lead to the
failure of the SOR, such as performing experiments near the
glass transition temperature30,35 or at a rate higher than the
inverse of the Rouse time of the chain in an elongational
experiment.36 The SOR fails also because while birefrin-

gence saturates, the stress can continue to grow without
limit.37 These factors are not present in our study, hence we
can deduce that the SOR is violated as flow-induced changes
of the microstructure of hyperbranched polymers were not
taken into account.

III. CONCLUSIONS

In this work, NEMD simulations have been performed
for four different hyperbranched polymer structures with mo-
lecular weight varying from 19 to 187. Rheological proper-
ties of these polymer melts were characterized and the cross-
over from Newtonian to non-Newtonian behavior was
captured in the considered range of strain rates. Computed
shear viscosities are slightly higher than those for dendrimers
and much lower than those for linear polymers of equivalent
molecular weight, which is in accordance with the molecular
architecture being more open than that of dendrimers and
much more compact than that of linear analogs. Shear thin-
ning is observed for all hyperbranched polymer fluids al-
though it occurs at different strain rates for different systems.
Normal stress coefficients were also calculated and were
shown to have very large power-law regions. The magnitude
of the second normal stress coefficient is 
20% of the first
normal stress coefficients. In all cases, the obtained pressure
of the polymeric fluid remains approximately constant at low
strain rates and rapidly increases at very high strain rates.

The flow birefringence of hyperbranched polymer melts
has also been characterized by taking into account the calcu-
lation of the form and intrinsic birefringence. For all sys-
tems, the flow alignment angle converges to 45° at low strain
rates and the order parameter results have shown that the
intrinsic birefringence is fairly small in comparison with the
form birefringence. Furthermore, the SOR has been shown to
be valid only in the Newtonian regime. The stress optical
coefficient of 
3.3�3� does not depend on the molecular
weight of hyperbranched polymers. In our systems, the SOR
fails in the non-Newtonian region because it does not take
into account the flow-induced changes of the microstructure.
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